Detecting Online Hate Speech Using Context Aware Models

نویسندگان

  • Lei Gao
  • Ruihong Huang
چکیده

In the wake of a polarizing election, the cyber world is laden with hate speech. Context accompanying a hate speech text is useful for identifying hate speech, which however has been largely overlooked in existing datasets and hate speech detection models. In this paper, we provide an annotated corpus of hate speech with context information well kept. Then we propose two types of hate speech detection models that incorporate context information, a logistic regression model with context features and a neural network model with learning components for context. Our evaluation shows that both models outperform a strong baseline by around 3% to 4% in F1 score and combining these two models further improve the performance by another 7% in F1 score.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Hate Speech on the World Wide Web

We present an approach to detecting hate speech in online text, where hate speech is defined as abusive speech targeting specific group characteristics, such as ethnic origin, religion, gender, or sexual orientation. While hate speech against any group may exhibit some common characteristics, we have observed that hatred against each different group is typically characterized by the use of a sm...

متن کامل

Hate Speech Detection with Comment Embeddings

We address the problem of hate speech detection in online user comments. Hate speech, defined as an “abusive speech targeting specific group characteristics, such as ethnicity, religion, or gender”, is an important problem plaguing websites that allow users to leave feedback, having a negative impact on their online business and overall user experience. We propose to learn distributed low-dimen...

متن کامل

A Survey on Hate Speech Detection using Natural Language Processing

This paper presents a survey on hate speech detection. Given the steadily growing body of social media content, the amount of online hate speech is also increasing. Due to the massive scale of the web, methods that automatically detect hate speech are required. Our survey describes key areas that have been explored to automatically recognize these types of utterances using natural language proc...

متن کامل

A Web of Hate: Tackling Hateful Speech in Online Social Spaces

Online social platforms are beset with hateful speech content that expresses hatred for a person or group of people. Such content can frighten, intimidate, or silence platform users, and some of it can inspire other users to commit violence. Despite widespread recognition of the problems posed by such content, reliable solutions even for detecting hateful speech are lacking. In the present work...

متن کامل

The Enemy Among Us: Detecting Hate Speech with Threats Based 'Othering' Language Embeddings

Offensive or antagonistic language targeted at individuals and social groups based on their personal characteristics (also known as cyber hate speech or cyberhate) has been frequently posted and widely circulated via the World Wide Web. This can be considered as a key risk factor for individual and societal tension linked to regional instability. Automated Web-based cyberhate detection is impor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017